403 research outputs found

    Phenological response of vegetation to upstream river flow in the Heihe Rive basin by time series analysis of MODIS data

    Get PDF
    Liquid and solid precipitation is abundant in the high elevation, upper reach of the Heihe River basin in northwestern China. The development of modern irrigation schemes in the middle reach of the basin is taking up an increasing share of fresh water resources, endangering the oasis and traditional irrigation systems in the lower reach. In this study, the response of vegetation in the Ejina Oasis in the lower reach of the Heihe River to the water yield of the upper catchment was analyzed by time series analysis of monthly observations of precipitation in the upper and lower catchment, river streamflow downstream of the modern irrigation schemes and satellite observations of vegetation index. Firstly, remotely sensed NDVI data acquired by Terra-MODIS are used to monitor the vegetation dynamic for a seven years period between 2000 and 2006. Due to cloud-contamination, atmospheric influence and different solar and viewing angles, however, the quality and consistence of time series of remotely sensed NDVI data are degraded. A Fourier Transform method – the Harmonic Analysis of Time Series (HANTS) algorithm – is used to reconstruct cloud- and noise-free NDVI time series data from the Terra-MODIS NDVI dataset. Modification is made on HANTS by adding additional parameters to deal with large data gaps in yearly time series in combination with a Temporal-Similarity-Statistics (TSS) method developed in this study to seek for initial values for the large gap periods. Secondly, the same Fourier Transform method is used to model time series of the vegetation phenology. The reconstructed cloud-free NDVI time series data are used to study the relationship between the water availability (i.e. the local precipitation and upstream water yield) and the evolution of vegetation conditions in Ejina Oasis from 2000 to 2006. Anomalies in precipitation, streamflow, and vegetation index are detected by comparing each year with the average year. The results showed that: the previous year total runoff had a significant relationship with the vegetation growth in Ejina Oasis and that anomalies in the spring monthly runoff of the Heihe River influenced the phenology of vegetation in the entire oasis. Warmer climate expressed by the degree-days showed positive influence on the vegetation phenology in particular during drier years. The time of maximum green-up is uniform throughout the oasis during wetter years, but showed a clear S-N gradient (downstream) during drier years

    Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths

    Get PDF
    The land surface heterogeneity has a very significant impact on atmospheric variables (air temperature T-a, wind speed u, and humidity q), the aerodynamic roughness length z(0m), thermodynamic roughness length z(0h), and the excess resistance to heat transfer kB(-1). First, in this study the land surface heterogeneity has been documented through the comparison of surface reflectance r(0), surface temperature T-0, net radiation flux R-n, and sensible heat flux H partitioning over the different land cover types in the experimental areas of the Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment on the Tibetan Plateau (GAME/Tibet), the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project on the Tibetan Plateau (CAMP/Tibet), the Heihe Basin Field Experiment (HEIFE), the Arid Environment Comprehensive Monitoring Plan, 95 (AECMP' 95), and the Dun Huang Experiment (DHEX). The results show that the surface heterogeneity was very significant in the areas of the HEIFE, the AECMP' 95, and the DHEX and that it was less significant in the areas of CAMP/Tibet and GAME/Tibet. Second, the vertical profiles of T-a, u, and q in the near-surface layer and above the blending height z(b) have been analyzed using the atmospheric boundary layer (ABL) tower data, radiosonde data, and tethered balloon data observed during the HEIFE, the DHEX, and the CAMP/Tibet. The results show that the land surface heterogeneity leads in the near-surface layer to different vertical profiles of u, T-a, and q overlying the surfaces of the Gobi and the oasis in the areas of the HEIFE and DHEX. The values of u, T-a, and q become well mixed above a height of about 300 m at the HEIFE and 150 m at the DHEX. z(0m), z(0h), and kB(-1) over the different land surfaces have also been determined in this study. The results show that the land surface heterogeneity leads to different aerodynamic and thermodynamic parameters over the areas of the HEIFE, the AECMP' 95, and the GAME/Tibe

    Estimation of soil and vegetation temperatures with multiangular thermal infrared observations: IMGRASS, HEIFE, and SGP 1997 experiments

    Get PDF
    The potential of directional observations in the thermal infrared region for land surface studies is a largely uncharted area of research. The availability of the dual-view Along Track Scanning Radiometer (ATSR) observations led to explore new opportunities in this direction. In the context of studies on heat transfer at heterogeneous land surfaces, multiangular thermal infrared (TIR) observations offer the opportunity of overcoming fundamental difficulties in modeling sparse canopies. Three case studies were performed on the estimation of the component temperatures of foliage and soil. The first one included the use of multi-temporal field measurements at view angles of 0°, 23° and 52°. The second and third one were done with directional ATSR observations at view angles of 0° and 53° only. The first one was a contribution to the Inner-Mongolia Grassland Atmosphere Surface Study (IMGRASS) experiment in China, the second to the Hei He International Field Experiment (HEIFE) in China and the third one to the Southern Great Plains 1997 (SGP 1997) experiment in Oklahoma, United States. The IMGRASS experiment provided useful insights on the applicability of a simple linear mixture model to the analysis of observed radiance. The HEIFE case study was focused on the large oasis of Zhang-Ye and led to useful estimates of soil and vegetation temperatures. The SGP 1997 contributed a better understanding of the impact of spatial heterogeneity on the accuracy of retrieved foliage and soil temperatures. Limitations in the approach due to varying radiative and boundary layer forcing and to the difference in spatial resolution between the forward and the nadir view are evaluated through a combination of modeling studies and analysis of field data

    Mapping areas of recharge and evaporation in deserts by means of thematic mapper data

    Get PDF

    Physical aspects and determination of evaporation in deserts applying remote sensing techniques

    Get PDF
    In the deserts of the world groundwater losses by evaporation are shown to be a very important and almost unknown quantity in the water balance of aquifers present.After establishing a new combination formula to calculate actual evaporation from within the soil, the evaporational soil physical aspects are discussed in detail. It is shown that under specified conditions vapour flow can take place against the direction of heat flow. A new, fundamental, definition of evaporation sites is given and its bearing on a model of heat and moisture flow is discussed. A theory of heat exchange at the soil - air interface is presented in terms of the apparent soil thermal admittance. Equations to relate the latter soil property to soil layering and to the frequency of the surface temperature wave are given. A theory of evaporation in terms of multi-dimensional geometry is proposed and it is shown how to derive approximate formulae to calculate actual evaporation by making use of satellite data only. For more accurate results point ground reference measurements have been used to calibrate the satellite-based calculations.After describing a particular desert area in Libya, the accuracy of a number of satellite data of that area is discussed on the basis of ground reference measurements and numerical correction procedures.Finally, the theory is combined with satellite and point ground reference data to calculate the different terms of the surface energy balance and the actual evaporation for some 36,000 km 2of the Libyan desert

    Defining relationships between surface characteristics and actual evaporation rate

    Get PDF
    There are no author-identified significant results in this report

    LiDAR mapping of tidal marshes for ecogeomorphological modelling in the TIDE project

    Get PDF
    The European research project TIDE (Tidal Inlets Dynamics and Environment) is developing and validating coupled models describing the morphological, biological and ecological evolution of tidal environments. The interactions between the physical and biological processes occurring in these regions requires that the system be studied as a whole rather than as separate parts. Extensive use of remote sensing including LiDAR is being made to provide validation data for the modelling. This paper describes the different uses of LiDAR within the project and their relevance to the TIDE science objectives. LiDAR data have been acquired from three different environments, the Venice Lagoon in Italy, Morecambe Bay in England, and the Eden estuary in Scotland. LiDAR accuracy at each site has been evaluated using ground reference data acquired with differential GPS. A semi-automatic technique has been developed to extract tidal channel networks from LiDAR data either used alone or fused with aerial photography. While the resulting networks may require some correction, the procedure does allow network extraction over large areas using objective criteria and reduces fieldwork requirements. The networks extracted may subsequently be used in geomorphological analyses, for example to describe the drainage patterns induced by networks and to examine the rate of change of networks. Estimation of the heights of the low and sparse vegetation on marshes is being investigated by analysis of the statistical distribution of the measured LiDAR heights. Species having different mean heights may be separated using the first-order moments of the height distribution
    corecore